出版國家:Singapore
出版周期:季刊
影響因子:0.36
研究領(lǐng)域:食品工業(yè)
5年影響因子:0.443
國外數(shù)據(jù)庫收錄:IM,0.36" />
醫(yī)學(xué)全在線
醫(yī)學(xué)全在線首頁-醫(yī)師-藥師-護(hù)士-衛(wèi)生資格-高級(jí)職稱-考試題庫-網(wǎng)校-考研-圖譜-下載-招聘  
分類
國家級(jí)省級(jí)浙江省各省雜志
科技核心北大核心CSCDCSCD擴(kuò)展
工具
期刊知識(shí)寫作指導(dǎo) 論文投稿推薦期刊
期刊驗(yàn)證論文檢測(cè) 錄用通知往期目錄
SCI
SCI指導(dǎo)影響因子
期刊點(diǎn)評(píng)基金動(dòng)態(tài)
其它
經(jīng)濟(jì)教育計(jì)算機(jī)
建筑體育農(nóng)業(yè)
北京|天津|河北|山西|湖北|江蘇|安徽|山東|上海|浙江|江西|福建|湖南|寧夏|內(nèi)蒙古|河南
四川|重慶|貴州|云南|遼寧|吉林|廣東|廣西|海南|陜西|甘肅|新疆|青海|衛(wèi)生部直屬|黑龍江|兵團(tuán)
您現(xiàn)在的位置: 醫(yī)學(xué)全在線 > 醫(yī)學(xué)論文 > SCI期刊 > 正文:Fractals if:0.36
    

Fractals


Fractals
影響因子: 0.36
I S S N: 0218-348X (印刷版) 0218-348X (ISSNLinking)
出 版 社: World Scientific Publishing Co
出 版 地: World Scientific
出版國家: Singapore
刊  期: 季刊
創(chuàng)刊時(shí)間: 1993
語  種: 英文
審稿周期: 12周,或約稿
中科院分區(qū): 4
投稿命中率: 容易
國外數(shù)據(jù)庫收錄: IM
中國收錄文章數(shù):
5年影響因子: 0.443
研究領(lǐng)域: 食品工業(yè)
官方鏈接: http://www.worldscientific.com/worldscinet/fractal...
投稿須知: http://www.worldscientific.com/worldscinet/fractal...

期刊介紹:

The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, technology and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes. Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality. The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.
...
關(guān)于我們 - 聯(lián)系我們 -版權(quán)申明 -誠聘英才 - 網(wǎng)站地圖 - 網(wǎng)絡(luò)課程 - 幫助
醫(yī)學(xué)全在線 版權(quán)所有© CopyRight 2006-2046, MED126.COM, All Rights Reserved
浙ICP備12017320號(hào)
百度大聯(lián)盟認(rèn)證綠色會(huì)員實(shí)名網(wǎng)站 360認(rèn)證可信網(wǎng)站 中網(wǎng)驗(yàn)證